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Abstract: We develop a powerful new limiting relation between lattice potential energy,UPOT, and unit cell
volume,V (hence, also, density), applicable to some of the most complex ionic solids known (including minerals,
and superconductive and even disordered, amorphous or molten materials). Our equation (which has a correlation
coefficient,R ) 0.998) possesses noempirical constants whatsoever, and takes the following form:UPOT )
AI(2I/Vm)1/3. It is capable of estimating lattice energies in the range5000 < UPOT/kJ mol-1 e 70 000 and
extending toward 100 MJ mol-1. The relation relies only on the following: (i) an ionic strength related term,
I (defined as1/2∑nizi

2, whereni is the number of ions of typei per formula unit, each bearing the chargezi,
with the summation extending over all ions of the formula unit); (ii) a standard electrostatic conversion term,
A/kJ mol-1 nm ) 121.39 (the normal Madelung and electrostatic factor as found in the Kapustinskii equation,
for example); and (iii)Vm, the volume of the formula unit (the “molar” or “molecular” volume). The equation
provides estimates ofUPOT to certainly within(7%; in most cases, estimates are significantly better than this.
Examples are provided to illustrate the uses of the equation in predicting lattice energies and densities; the
calculations require minimal data and can be performed easily and rapidly, even on a pocket calculator. In the
lower lattice energy range (i.e.,UPOT/kJ mol-1 < 5000, corresponding to the simpler compounds and to many
inorganic salts possessing complex ions), our recently published linear correlation is more accurate. The linear
equation, though empirically developed, is consistent with and can be rationalized following the approach
developed here.

Lattice potential energy (UPOT) is a dominant term in the
thermodynamic analysis of the existence and stability of ionic
solids. Direct experimental determination is generally not
possible since, in practice, the crystalline solid dissociates into
atoms andnot into gaseous ions, as is required in the lattice
energy evaluation. Therefore, its indirect experimental deter-
mination, computation, or estimation is of considerable interest
in modern materials science; indeed, whenever the energetics
of condensed-state materials are studied, the chemical processes
under consideration may be rationalized if the appropriate lattice
energy steps can be incorporated into the thermochemical cycle.

A variety of estimation methods for lattice energies is
available. These include the Born-Haber-Fajans thermochemi-
cal cycle1 (which requires ancillary thermodynamic data) and
modern computational methods (which generally require knowl-
edge of the lattice constants and the coordinates of the ions as
well as needing an established force field). The computational
methods range from direct energy calculational procedures2

through to programs that produce lattice energies in the course
of their modeling of the solid.3-5 Quantum mechanical proce-
dures are also available, but are highly computationally expen-
sive and are generally applied only to the simpler systems.

By contrast, a few exceedingly rapid estimation methods
based on ionic radii6-8 or volume per formula unit (“molecular”
volume)9 have been developed. Originally only applicable to
the simpler binary ionic solids (such as MX (with a 1:1 charge
ratio)), the volume-based approach has recently been extended
by us10 to include MX2 (2:1) and M2X (1:2)) salts. It is our
purpose in this paper to complete the extension of the range of
these estimation methods, yielding very simple routes to lattice
potential energies for essentially all ionic solids (whether
crystalline, disordered, amorphous or even molten).

The earliest, and best-known, of the lattice energy estimation
methods for binary ionic solids is due to Kapustinskii and
Yatsimirskii:6-8

wherez+, z-/electron units are the integer charges on cations
and anions, respectively,ν is the number of ions per formula
unit, F is a compressibility constant (derived from Born-Mayer
theory11) describing the repulsions between the ions (usually
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chosen asF ) 0.0345 nm),〈r〉 is the sum of the cation and
anion thermochemical radii (sometimes taken to correspond to
the shortest anion-cation distance in the lattice), andA () 121.4
kJ mol-1 nm) is the term1/2NAMe2/4πε0, whereNA/molecules
mol-1 is Avogadro’s number,M is the Madelung constant of
the rock salt (sodium chloride)-type lattice () 1.74756) on which
the simplifications of the Kapustinskii equation are based,e/C
is the charge on the electron and 4πε0/C2 J-1 m-1 is the vacuum
permittivity. This equation (quadratic in1/〈r〉) is independent
of the actual structure of the ionic solid; hence, it has the
corresponding limitation of yielding the same lattice energy for
all pleomorphic crystal structures and even amorphous materials.
In its conventional usage, the Kapustinskii equation has served
to yield lattice potential energy estimates even for inorganic
complex salts by the device of developing thermochemical
radii.12 The previously limited range of thermochemical radii
has recently been considerably extended by us13,14 to include
data for over 400 complex anions and cations.

In conventional electrochemical theory15,16the ionic strength
term in solution,I, is defined by the equation

wheremi/mol kg-1 is the ionic molality andzi/electron units is
the charge on theith ion; the summation is over all the ions in
the formula unit of the electrolyte.

Recently, Glasser17 demonstrated that the original Kapustin-
skii equation can be generalized beyond binary systems, to apply
even to complex ionic solids, by substituting for the dimension-
less quantity|νz+z-|, the ionic strength-like termΣ ni zi

2 (where
ni is the number of ions with integer chargezi; the summation
is taken over all the types of ions,i, in the formula unit):

This substituted term describes the interactions among the
complex of charges, but still simplifies to the original term for
a binary system of charges.

Accordingly, thegeneralized Kapustinskii equationcan be
written, using this definition ofI, as

where〈r〉 is the weighted-mean cation-anion sum.
In a related development, a satisfactory linear correlation

between lattice energy and the volume per formula unit
(“molecular” volume,Vm) has been demonstrated for generalized
binary ionic solids,10 extending a similar relation for (1:1) binary
salts published by Mallouk et al.:9

where R (which has a value close to that ofA) and â are
empirical constants.

We now wish to apply the volume substitution for〈r〉 more
broadly, thus further generalizing and extending the equation
to more complex ionic solids, such as minerals, magnetic and
superconductor materials, and so forth. However, Figure 1 (using
the extensive set of data in Table 1, encompassing over 120
ionic solids) shows that the linear relation is unsatisfactory for
the more complex ionic solids. (The reference lattice energies
in Table 1 are obtained from the literature or (for the minerals)
from prior, independent (but unpublished18) calculations, using
a value of 838 kJ mol-1 for the standard enthalpy of formation
of the O2-(g) ion, which is consistent with the lattice energies
of many simpler materials.)

We therefore proceed by extending the generalized Kapustin-
skii eq 4 to more complex ionic materials, recognizing that the
equation can be treated as a simple product of three terms: (i)
a repulsion factor,R) (1 - F/〈r〉); (ii) a reciprocal of a cation-
anion distance (〈r〉); and (iii) a set of constant terms () 2AI).

(i) The Repulsion Factor: R. In the early Born-Landé
theory for the lattice energy of binary ionic solids, the repulsion
factor,R, is formulated as (1- 1/n), wheren is obtained from
the compressibility of the crystalline material, having a valuen
) 8 for sodium chloride. This corresponds to the repulsion
factor, R, having the fixed value 0.875. In Figure 2 we
investigate the constancy of the Kapustinskii form ofR (i.e., 1
- F/〈r〉 ); as may be seen from the figure, the function is rather
variable for salts having small lattice energies (in the range 0.94
> R > 0.82, and so neatly straddling the Born-Landévalue).
but for materials having lattice energies greater than 5000 kJ
mol-1, R reaches a limiting value ofR ) ∼0.84. This limiting
value of R is thus adopted as a constant in our extended
expression.

(ii) The Cation-Anion Distance: 〈r〉. The sodium chloride
lattice is face-centered cubic, with lattice constanta and four
formula units per unit cell (i.e., Z ) 4). The cation-anion
distance,〈r〉, is a/2. Hence, the relation between〈r〉 and the
molecular volume (Vm ) V/Z) is precise, and is

If we are to treat more complex lattices, this expression needs
to be normalized against sodium chloride lattices, since more
complex materials will have less simple ionic formulas and
correspondingly different charge densities. If a Boltzmann
distribution of charge is assumed, then it follows (as in a Debye-
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Figure 1. UPOT (linear) (from the linear eq 5, with10 R ) 138.7 kJ
mol-1 nm andâ ) 27.6 kJ mol-1) versusUPOT (ref), showing un-
successful prediction beyond values ofUPOT greater than 5000 kJ mol-1.

UPOT ) 2AI(1/〈r〉)R (4a)

〈r〉 ) (4Vm)1/3/2 ) (Vm/2)1/3 (6)
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Table 1a

chemical
formula

mineral
name ref Vcell/nm3 Z

Vm ) Vcell

Z-1/nm3 I 〈r〉/nm
U(ref)

/kJ mol-1
U(pred)

/kJ mol-1
U(pred)/
U(ref)

SF3‚BF4 b 0.4394 4 0.1099 1 N/A 598 319 0.534
KClO4 0.3627 4 0.0907 1 N/A 599 340 0.568
KMnO4 0.3855 4 0.0964 1 N/A 607 334 0.550
RbI 0.3930 4 0.0983 1 0.372 617 331 0.537
ClO2‚BF4 b 0.4514 4 0.1129 1 N/A 620 316 0.510
KI 0.3507 4 0.0877 1 0.358 632 344 0.545
RbBr 0.3228 4 0.0807 1 0.348 632 354 0.560
CsClO4 0.4590 4 0.1148 1 N/A 636 315 0.495
KBr 0.2849 4 0.0712 1 0.334 671 369 0.550
RbCl 0.2823 4 0.0706 1 0.333 680 370 0.544
NaI 0.2698 4 0.0675 1 0.322 682 376 0.551
KCl 0.2492 4 0.0623 1 0.319 701 386 0.550
LiClO4 0.2900 4 0.0725 1 N/A 709 367 0.517
LiI 0.2160 4 0.0540 1 0.296 730 405 0.554
NaBr 0.2106 4 0.0527 1 0.298 732 408 0.557
CsF 0.2171 4 0.0543 1 0.300 744 404 0.543
NaCl 0.1794 4 0.0449 1 0.283 769 430 0.560
NaClO3 0.2842 4 0.0711 1 N/A 770 369 0.480
RbF 0.1785 4 0.0446 1 0.285 774 431 0.557
LiBr 0.1655 4 0.0414 1 0.272 788 442 0.561
KF 0.1514 4 0.0379 1 0.271 808 456 0.564
LiCl 0.1358 4 0.0340 1 0.257 834 472 0.566
NaF 0.0995 4 0.0249 1 0.235 910 524 0.576
LiF 0.0649 4 0.0162 1 0.209 1030 604 0.587
Cs2MoCl6 1.0834 4 0.2709 3 N/A 1347 1023 0.759
Cs2GeCl6 1.0704 4 0.2676 3 0.502 1375 1027 0.747
Cs2CoCl4 0.9336 4 0.2334 3 0.473 1391 1075 0.773
Cs2CuCl4 0.9196 4 0.2299 3 N/A 1393 1080 0.775
Rb2MoCl6 0.9969 4 0.2492 3 N/A 1399 1052 0.752
K2MoCl6 0.9556 4 0.2389 3 N/A 1418 1066 0.752
Cs2ZnCl4 0.9336 4 0.2334 3 N/A 1429 1075 0.752
Cs2ZnBr4 1.0709 4 0.2677 3 N/A 1454 1027 0.706
Cs2GeF6 0.7311 4 0.1828 3 N/A 1573 1166 0.741
K2PtCl4 0.2034 1 0.2034 3 N/A 1574 1125 0.715
Ba(MnO4)2 1.2893 8 0.1612 3 N/A 1778 1216 0.684
BaI2 0.5060 4 0.1265 3 0.355 1831 1318 0.720
CaI2 0.1210 1 0.1210 3 0.320 1905 1338 0.702
Rb2S 0.4513 4 0.1128 3 0.336 1929 1369 0.710
MgI2 0.1021 1 0.1021 3 0.292 1944 1416 0.728
BaBr2 0.4290 4 0.1073 3 0.331 1950 1393 0.714
K2S 0.3988 4 0.0997 3 0.322 1979 1427 0.721
BaCl2 0.3506 4 0.0877 3 0.316 2033 1490 0.733
MgBr2 0.0788 1 0.0788 3 0.268 2097 1544 0.736
CaBr2 0.1965 2 0.0983 3 0.296 2132 1434 0.673
Sr(ClO3)2 1.0745 8 0.1343 3 N/A 2155 1292 0.600
Na2S 0.2795 4 0.0699 3 0.286 2192 1607 0.733
CaCl2 0.1685 2 0.0843 3 0.281 2223 1509 0.679
Na2CO3 0.2715 4 0.0679 3 N/A 2301 1622 0.705
MgCl2 0.1965 3 0.0655 3 0.253 2326 1642 0.706
BaF2 0.2378 4 0.0595 3 0.268 2341 1696 0.724
Li2CO3 0.2251 4 0.0563 3 N/A 2523 1727 0.684
CaF2 0.1631 4 0.0408 3 0.233 2609 1923 0.737
CaCO3 vaterite c 0.7500 12 0.0625 4 N/A 2777 2447 0.881
CaCO3 calcite c 0.3678 6 0.0613 4 N/A 2814 2463 0.875
CaCO3 aragonite c 0.2267 4 0.0567 4 N/A 2820 2528 0.897
MgF2 0.0659 2 0.0330 3 0.205 2913 2064 0.709
BaO 0.1682 4 0.0421 4 0.267 3029 2793 0.922
SrO 0.1350 4 0.0338 4 0.250 3217 3005 0.934
BaLiF3 d 0.0638 1 0.0638 4 N/A 3361 2430 0.723
MgO 0.0785 4 0.0196 4 0.204 3795 3600 0.949
NiO 0.0727 4 0.0182 4 0.201 3908 3694 0.945
AlAsO4 0.2458 3 0.0819 9 N/A 7255 6592 0.909
AlPO4 0.2315 3 0.0772 9 N/A 7427 6725 0.906
Mg2P2O7 k 0.9598 8 0.1200 12 N/A 8275 8519 1.030
Ca2CuO2Cl2 e 0.2260 2 0.1130 11 0.248 9162 7739 0.845
Ca3(PO4)2 f 3.4200 21 0.1629 15 N/A 10602 10360 0.977
SiO2 low quartz l 0.1127 3 0.0376 12 0.172 11627 12546 1.079
TiO2 anatase f 0.1363 4 0.0341 12 0.196 12454 12961 1.041
TiO2 brookite f 0.2606 8 0.0326 12 N/A 12462 13156 1.056
TiO2-II f 0.1226 4 0.0307 12 N/A 12466 13426 1.077
TiO2 rutile f 0.0624 2 0.0312 12 N/A 12493 13347 1.068
LaFeO3 g 0.0605 1 0.0605 15 0.227 13364 14412 1.078
LaMnO3 g 0.0595 1 0.0595 15 0.225 13478 14492 1.075
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type of analysis) that the charge density is proportional to the
ionic strength,I. Thus, to extend the equation to these less simple
cases, we need to normalize the volume in expression 6 by
dividing the molecular volume by the ionic strength (which has
the valueI ) 1 for sodium chloride), to yield a normalized
molecular volume,Vnorm:

Figure 3 demonstrates that, for situations whereUPOT > 5000
kJ mol-1, 〈r〉 is larger than(Vm/2I)1/3 by a limiting factor (L) of
value∼1.7. The existence of this factor is easily rationalized
since the cell volume is more closely packed in these more
complex materials than it is in simpler salts; consider, for
example, that in SiO2 the Si4+ cationslying within a tetrahedral
cavity among four O2- anionsscontributes little (or nothing)
to the cell volume. Hence, 1/L represents a packing factor, and

Table 1 (Continued)

chemical
formula

mineral
name ref Vcell/nm3 Z

Vm ) Vcell

Z-1/nm3 I 〈r〉/nm
U(ref)

/kJ mol-1
U(pred)

/kJ mol-1
U(pred)/
U(ref)

LaCrO3 g 0.0581 1 0.0581 15 0.224 13678 14608 1.068
LaCoO3 g 0.0559 1 0.0559 15 0.224 13805 14797 1.072
NdFeO3 h 0.2366 4 0.0592 15 0.223 13854 14521 1.048
LaAlO3 h 0.1090 2 0.0545 15 0.220 13856 14923 1.077
Ti2O3 f 0.1044 2 0.0522 15 0.201 14847 15139 1.020
Mn2O3 0.8386 16 0.0524 15 0.197 15146 15118 0.998
HgBa2CuO4 d 0.1458 1 0.1458 18 0.243 15398 13708 0.890
CaSiO3 wollastonite 0.3978 6 0.0663 16 0.202 16439 15235 0.927
MgSiO3 clinoenstatite 0.4181 8 0.0523 16 0.188 16725 16493 0.986
MgAl2O4 h 0.5276 8 0.0660 19 0.192 19269 19192 0.996
Ba2SiO4 0.4434 4 0.1109 20 0.235 19300 17284 0.896
Ca2SiO4 larnite 0.3427 4 0.0857 20 0.212 19831 18834 0.950
Ca2SiO4 0.3926 4 0.0982 20 N/A 19980 18000 0.901
Ba2In2O5 i 0.5923 4 0.1481 23 0.240 20065 18909 0.942
CaMgSiO4 monticellite 0.3418 4 0.0855 20 0.203 20364 18851 0.926
Mg2SiO4 forsterite 0.2919 4 0.0730 20 0.183 20697 19869 0.960
Ca2Fe2O5 h 0.4485 4 0.1121 23 0.216 21811 20746 0.951
Ti3O5 γ-Ti3O5 f 0.3417 4 0.0854 27 0.199 27033 28129 1.041
Ti3O5 high Ti3O5 f 0.3700 4 0.0925 27 N/A 27159 27392 1.009
Ti3O5 low Ti3O5 f 0.3499 4 0.0875 27 N/A 27164 27907 1.027
Al2SiO5 kyanite 0.2932 4 0.0733 27 0.187 28687 29601 1.032
Al2SiO5 andalusite 0.3422 4 0.0856 27 N/A 28807 28115 0.976
CsTiOAsO4 i 0.9890 8 0.1236 31 0.224 30020 29898 0.996
RbTiOAsO4 i 0.9545 8 0.1193 31 0.219 30021 30254 1.008
Ba2LaRuO6 m 0.1553 1 0.1553 33 0.244 30134 30118 0.999
KTiOAsO4 i 0.9328 8 0.1166 31 0.215 30334 30487 1.005
Sr2ErRuO6 m 0.2696 2 0.1348 33 0.231 30452 31573 1.037
Ba2YRuO6 m 0.2880 2 0.1440 33 0.236 30470 30886 1.014
Sr2LuRuO6 m 0.2638 2 0.1319 33 0.230 30640 31803 1.038
Sr2YRuO6 m 0.2720 2 0.1360 33 0.228 30686 31480 1.026
KSnOPO4 i 0.9212 8 0.1152 31 0.214 31158 30614 0.983
RbTiOPO4 i 0.8901 8 0.1113 31 0.217 31257 30967 0.991
KVOPO4 i 0.8642 8 0.1080 31 0.210 31633 31273 0.989
TlTiOPO4 i 0.8781 8 0.1098 31 0.216 31794 31107 0.978
KTiOPO4 i 0.8682 8 0.1085 31 0.212 31850 31225 0.980
CaMgSi2O6 diopside 0.4388 4 0.1097 32 0.195 33324 32458 0.974
LiAlSi 2O6 â-spodumene 0.3899 4 0.0975 33 0.184 34815 35176 1.010
NaAlSi2O6 jadeite 0.4012 4 0.1003 33 0.191 35020 34843 0.995
Ti4O7 f 0.4661 4 0.1165 39 0.199 39893 41413 1.038
CaAl2Si2O8 anorthite 1.3363 8 0.1670 43 0.189 45005 41836 0.930
KAlSi3O8 microcline 0.7201 4 0.1800 45 0.194 47583 43354 0.911
KAlSi3O8 adularia 0.7150 4 0.1788 45 N/A 47626 43457 0.912
KAlSi3O8 low sandinite 0.7172 4 0.1793 45 N/A 47746 43413 0.909
Ba3NiSb2O9 j 0.4210 2 0.2105 51 0.231 49757 48626 0.977
Ba3SrRu2O9 j 0.9181 4 0.2295 51 0.238 50801 47244 0.930
Ba3CaRu2O9 j 0.4379 2 0.2190 51 0.235 51007 47992 0.941
Y3Fe5O12 h 1.8955 8 0.2369 60 0.208 56504 58056 1.027
Y3Al5O12 h 1.7349 8 0.2169 60 0.199 58006 59795 1.031
Ti6O11 f 0.7160 4 0.1790 63 0.198 64051 68029 1.062
Ba4NaSb3O12 j 0.5678 2 0.2839 70 0.235 64996 67133 1.033
Ba4LiSb3O12 j 0.5548 2 0.2774 70 0.232 65181 67653 1.038
Sr4NaSb3O12 j 0.5295 2 0.2648 70 0.226 65481 68714 1.049

a Crystal data from Donnay, J. D. H.Crystal Data: DeterminatiVe Tables, 2nd ed.; American Crystallographic Assoc.: Pittsburgh, PA, 1963,
andUPOT( ref) from ref 14, or calculation (HDBJ), unless otherwise referenced.〈r〉 is the mean cation-anion radius sum for use in the Kapustinskii
eq 1. The table is sorted by ascending values ofUPOT(ref). b Reference 9.c Jenkins, H. D. B.; Pratt, K. F.; Smith, B. T.; Waddington, T. C. J.Inorg.
Nucl. Chem.,1976, 38, 371. d Jackson, R. A.; Valerio, M. E. G.; de Lima, S. F.J. Phys.: Condens Matter1996, 8, 10931.e Islam, M. S.; Read,
M. S. D.; D’Arco, S.Faraday Discuss.1997, 106, 367. f le Roux, H.; Glasser, L.J. Mater. Chem., 1997, 7, 843. g Islam, M. S.; Cherry, M.Solid
State Ionics, 1997, 97, 33-37. Data supplied to L.G. by M.S.I., in a personal communication.h Bush, T. S.; Gale, J. D.; Catlow, C. R. A.; Battle,
P. D. J. Mater. Chem., 1994, 4, 831.i Fisher, C. A. J.; Islam, M. S.Solid State Ionics1999, 118, 355. j Taylor, M. G.; Simkiss, K.; Drew, M. G.
B.; Mitchell, P. C. G.; Leslie, M.Mol. Simul.1992, 9, 129. k Post, J. E.; Burnham, C. W.Am. Mineral.1986, 71, 142. l Glasser, L.; Catlow, C. R.
A. J. Mater. Chem. 1997, 7, 2537.m Battle, P. D.; Bush, T. S.; Catlow, C. R. A.J. Am. Chem. Soc.1995, 117, 6292.

〈r〉 ) (Vm/2I)1/3 ) Vnorm
1/3 (7)
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we underestimate the cation-anion radius sum in expression 7
if this packing factor is ignored. The limiting relation between
〈r〉 andVm can then be expressed in the form

and thus

(iii) The Constants: (2AI ). These fundamental electrostatic-
based constants remain unaffected by the increasing complexities
of the lattice, being simply referred to the sodium chloride lattice
by the above normalization of the cell volume.

The Extended, Generalized Equation.We now combine
these modified expressions, (4a) and (7b), into a single,
substituted, version of the generalized Kapustinskii equation,
in the form

From the values adopted forR and L for the more complex
lattices, we anticipate thatL/Rwill have a limiting value (≈1.7/
0.84) close to 2; Figure 4 demonstrates that this is indeed the
case. Thus, finally, the leading coefficient, 2, in eq 4a is canceled
with the termR/L, to yield our limiting equation:

Remarkably, this equation has no adjustable constants. Its
success in the evaluation of lattice energies, and the closeness
of the lattice energies that it yields to those of the generalized

Kapustinskii equation, is shown in Figure 5. (A very slightly
improved correlation may be obtained if the factorA is
represented by a fitted constant, but its value will depend on
the precise set of ionic solids selected for the fit.)

This result also explains the value of the constant,R ) 138.7
kJ mol-1 nm, previously obtained as an empirical constant for
our generalized linear eq 5 for binary ionic solids;10 that equation
already allows in its formulation for the repulsion factor,R, so
that the constant could be expected to have a value approximat-
ing to 2A/L, i.e., 142.8 kJ mol-1 nmsa difference of only 3%
from the value noted above.

The essential reason for the success of these charge- and
repulsion-based formulas is, of course, that the contributions
of the Coulombic interactions in ionic solids dominate the
energy, constituting some85% of the total lattice potential
energy, in close agreement with the above-mentioned Born-
Landé factor. However, it is also clear from the process of
derivation of eq 9, as a limiting equation, that it will not be
successful for small lattice energies (see Figures 2-5); Figure
6 demonstrates that our earlier linear eq 5 is more successful
for UPOT < 5000 kJ mol-1.

We believe that eq 9 is an important generalization and
extension, worthy of detailed theoretical analysis. It is one that
will be of wide interest to materials scientists, inorganic
chemists, solid-state chemists, and mineralogists alike and will
allow the easy and reliable prediction of lattice energies, unit
cell volumes, and densities of ionic solids (and even ionic melts).
This is particularly true for minerals, complex oxides, and other
complex inorganic solids (such as superconductors and magnetic
materials) and will, in consequence, lead to an improved
understanding of their stabilities and instabilities.

Advantages of the Extended, Generalized Equation.While
the generalized Kapustinskii and our extended, generalized

Figure 2. Repulsion factor,R ) 1 - F/〈r〉 versusUPOT (ref), showing
that R reaches a limiting value of∼0.84 for lattice energies greater
than 5000 kJ mol-1. The data points are linked by straight lines in
order to emphasize the systematic trends at small values ofUPOT (ref).

Figure 3. RatioL ) 〈r〉/(Vm/2I)1/3, plotted versusUPOT (ref). The ratio
reaches a limiting value of∼1.7 for lattice energies greater than 5000
kJ mol-1. 1/L represents a packing factor.

〈r〉 ) (Vm/2I)1/3L (7a)

1/〈r〉 ) (2I/Vm)1/31/L (7b)

UPOT ) 2AI(2I/Vm)1/3(R/L) (8)

UPOT ) AI(2I/Vm)1/3 ) AI/Vnorm
1/3 where Vnorm ) Vm/2I

(9)

Figure 4. Ratio L/R, plotted versusUPOT (ref). The ratio reaches a
limiting value close to 2 for lattice energies greater than 5000 kJ mol-1.

Figure 5. Comparison ofUKaps/U(ref) andU(pred)/U(ref) versusU(ref).
Perfect prediction would, in each case, yield a constant value of exactly
1. UKaps is calculated from eq 1, using the standard values,A ) 121.39
kJ mol-1 nm andF ) 0.0345 nm, and the mean cation-anion sums,
〈r〉, listed in Table 1.
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equations are obviously very closely related, they are, in certain
circumstances, also complementary. Nevertheless, the advantage
of adopting eq 9 for most purposes is easily seen, for the
following reasons:

(a) This volume-based equation uses anexperimentalmolar/
molecular volume for input, rather than tabulated and average
ionic or thermochemical radii, which places it more directly in
relation to experiment.

(b) Pleomorphic forms, while having the same chemical
formula, will be predicted by eq 9 to have slightly differing
lattice energies, in keeping with experiment, whereas the
Kapustinskii equation generates identical lattice energies for all
the pleomorphs.

(c) The effective packing volume is more realistic for complex
ions than is the fictional, but simplifying, thermochemical radii
which approximate the ions as being spherical.

(d) The Kapustinskii eq 4 and our generalized eq 9 are
complementary in that it is possible to combine the two
expressions to predict molar volumes (and, hence, densities)s
which will, however, be identical for pleomorphic forms. The
Kapustinskii equation yields a lattice energy, which can then
be used for the purposes of a molar volume,Vm, estimation
with the volume-based equation (see following section); it is
also possible to use eq 9 to relate〈r〉 and hence the shortest
cation-anion distance in the lattice withVm directlysno other
method than these for estimation ofVm have before been
proposed.

(e) Since lattice potential energies are so readily obtained by
means of eq 9, they can be used in thermochemical cycle
calculations for estimating otherwise unattainable enthalpies of
formation of gaseous ions.

(f) Use of the factor 2I as a normalizing divisor forVm has
not previously been anticipated and, clearly, has important
theoretical significance in the study of ionic solids.

The New Equation in Use.In calculation of lattice energies,
there is a certain arbitrariness in the selection of the ions of
which the lattice is conceived to be composed. Thus, for
example, calcium carbonate can be treated as consisting of
calcium and carbonate ions

or as calcium, carbon, and oxide ions, as in

The lattice energies obtained for these two complementary

processes will be different (the energy will be larger when the
structure is conceived as breaking up into single ions). In Table
1 we find some substances treated as consisting of complex
ions, e.g., CaCO3, while the complex minerals are treated as
consisting of single ions; the choice made is consistent with
that in the reference calculation of the lattice energy,U(ref).

We illustrate our prediction of the lattice potential energy of
the minerallarnite or â-calcium orthosilicate(corresponding
to the first “Ca2SiO4” entry in Table 1). The crystal structure
determinations of this mineral by Midgley19 and by Cruicks-
hank20 show the structure to be monoclinic, having the following
crystal structure parameters:a ) 0.548 nm,b ) 0.676 nm, c
) 0.928 nm,â ) 94°33′, andZ ) 4.

Unit cell volume is given by the generally applicable equation

or, in simplified form (for all except the rhombohedral and
triclinic crystal systems),

whereη is the unique oblique angle or, if there is no such unique
angle, 90°, in which case

We first establish the value ofVm ) Vcell/Z ) 0.3427/4) 0.0857
nm3, employing eq 10b. Treating the oxide as composed of two
Ca2+, one Si4+, and four O2- ions leads, from eq 3, to a value
for I ) 20. Hence, using our extended generalized eq 9,Vnorm

) Vm/2I ) 0.0857/40) 0.002142 nm3. The termAI/Vnorm
1/3 )

AI(2I/Vm)1/3 ) 18 834 kJ mol-1, which is our estimated lattice
potential energy,UPOT, for the mineral,larnite. The full-scale
lattice potential energy computation made using the program
LATEN21 gives a value 19 831 kJ mol-1 (prediction error 5.0%)
while the Born-Fajans-Haber cycle value is calculated to be
19 949 kJ mol-1 (prediction error 5.6%).

Alternatively, were we to regard the mineral as consisting of
two Ca2+ and one complex SiO44- ion, for which I ) 12, then
eq 9 leadsto Vnorm ) Vm/2I ) 0.0857/24) 0.0035708 nm3.
Then:UPOT ) AI/Vnorm

1/3 ) AI(2I/Vm)1/3 ) 9530 kJ mol-1. The
difference (9304 kJ mol-1) between these two lattice energies
corresponds to the self-energy of formation of the complex ion,
SiO4

4-(g), from its constituent gaseous atomic ion counterparts:

If we have ancillary data for∆fHQ(Si4+, g) and∆fHQ (O2-, g),
then we can, as the closing loop of an appropriate thermo-
chemical cycle, estimate a value for the standard enthalpy of
formation of the gaseous SiO4

4- ion, ∆fHQ (SiO4
4-, g), using

the self-energy above (suitably corrected to an enthalpy change
by subtraction of 4RT).

We illustrate the estimation of density,F, using magnetite,
Fe3O4, as our example, for which the literature value is 5.18 g

(19) Midgley, C. M.Acta Crystallogr.1952, 5, 307.
(20) Cruickshank, D. W. J.Acta Crystallogr.1964, 17, 685.
(21) Jenkins, H. D. B.; Pratt, K. F.Prog. Solid State Chem.1979, 12,

125.

Figure 6. Prediction of lattice energy by the linear eq 5 and our
extended, generalized eq 9 forUPOT < 5000 kJ mol-1. Perfect prediction
would follow the diagonal line; hence, eq 5 is to preferred for the lower
range of lattice energies.

CaCO3(s) f Ca2+(g) + CO3
2-(g)

CaCO3(s) f Ca2+(g) + C4+(g) + 3O2-(g)

Vm )

(abcx1 - cos2 R - cos2 â - cos2 γ + 2 cosR cosâ cosγ)/Z
(10)

Vm ) abcsin η/Z (10a)

Vm ) abc/Z (10b)

Si4+(g) + 4O2-(g) f SiO4
4-(g)
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cm-3. Equation 9, solved for density, has the form

where the factor 1021 converts nm3 to cm3, while Avogadro’s
number,NA, is required to convert between molar mass,Mm,
and molecular mass.

The lattice potential energy of magnetite was previously
estimated by Glasser17 from his generalized Kapustinskii
equation asUKaps(Fe3O4) ) 18 788 kJ mol-1, with I ) 19.

Hence, F ) 5.46 g cm-3, which is within 5% of the literature
value.

Similar calculations on a range of materials (results not given
here) show that the error is quite generally within 30% of
literature densities (which often cover a somewhat wide range
and sometimes differ considerably from the X-ray-calculated
value). It is hardly surprising that our predicted densities have
a large error range relative to the predicted lattice energy since
our density calculation relies on the cube ofUPOT. Conversely,
the fact thatUPOT depends on the cube root ofVm renders the
lattice potential energies the more reliable.

JA992375U

F/g cm-3 ) 1021

NA

Mm

2I4 (UPOT

A )3
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